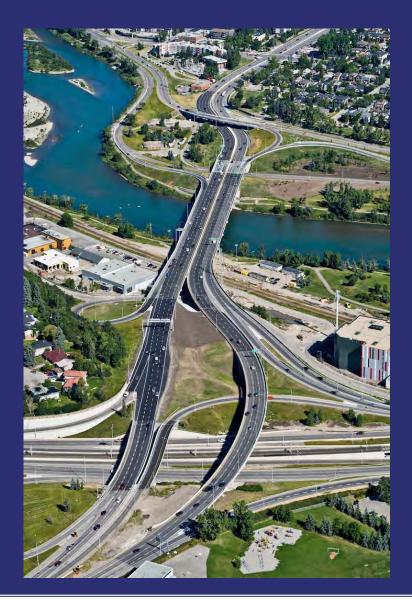
Geotechnical Evaluation of Bridge Foundations for Reuse

CEA Transportation Conference 2024


Iain Gidley, M.Sc., P. Eng. Principal Geotechnical Engineer

Why?

- Existing infrastructure is over capacity and reaching its design life
- Large capital costs with removal and installation of new foundations
- Limited space, particularly in Urban Environments
- Environmental and permitting constraints
- All of these were that case for the Crowchild Bridge project in Calgary

But that project is not the only one....

Current References

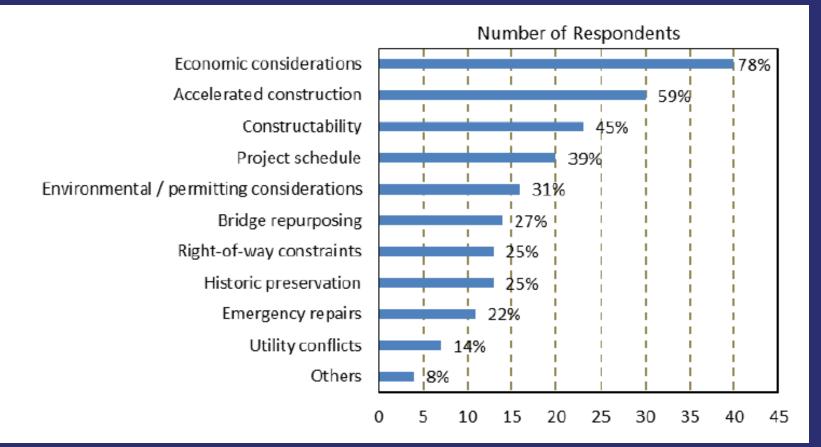
2018 FHWA Publication Foundation Reuse for Highway

<text><section-header><image>

Illinois Department of Transportation (IDOT)

Bridge Condition Report Procedures & Practices

BRIDGE CONDITION REPORT PROCEDURES & PRACTICES



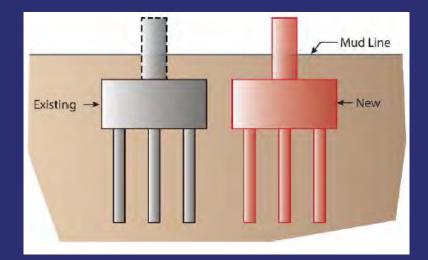
Illinois Department of Transportation Bureau of Bridges and Structures

Bridges

WHAT ARE THE BENEFITS OF FOUNDATION REUSE?

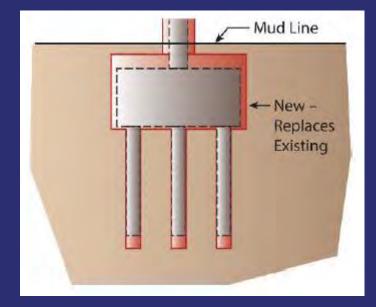
2017 survey of current practices on the reuse of bridge foundations

WHAT CAN WE DO WHEN IT IS TIME TO UPGRADE?

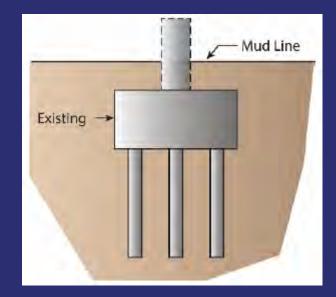

Four Basic Options

- Install new foundation on a new alignment
 - Reuse or replace the existing bridge, add a new bridge to increase capacity
- Install new foundation on an existing alignment
 - Demolish the existing bridge and foundation and build a new bridge
- Re-evaluation and reuse of existing foundation
- Reuse existing foundation by strengthening it

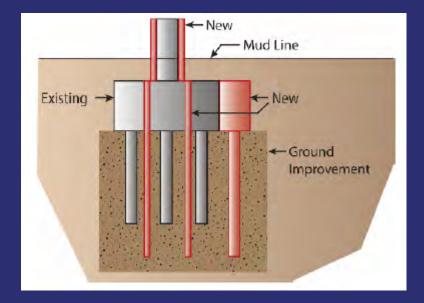
Install new foundation on a new alignment


- Pros
 - Infrastructure meets modern standards
 - Known design life
 - Less impact on traffic
- Cons
 - Expensive
 - Requires more area

Install new foundation on the existing alignment


- Pros
 - Potential to reuse architectural elements of existing infrastructure
 - Can re-use the existing alignment
 - Meets modern standards
- Cons
 - Difficult to remove the existing foundation
 - Where does the current traffic go?

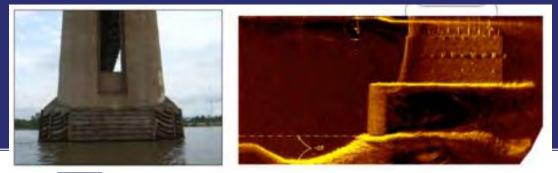
Re-evaluation and reuse existing foundation


- Pros
 - Reduced costs and construction time
- Cons
 - Uncertain design life?
 - Use of new techniques or technologies
 can limit contractors and designers
 - Limited ability to increase capacity

Reuse existing foundation by strengthening it

- Pros
 - Can increase capacity
 - Update to modern standards
- Cons
 - Space constraints can lead to suboptimal design
 - Uncertain design life

HOW CAN THE DECISION BE MADE?


- Requires reverse thinking
- Typically, the Structural Designer specifies loads and Geotechnical Engineer designs foundations to support them
- For reuse the Geotechnical Engineer assesses available capacity and the Structural Designer works within the constraints
- Needs close collaboration between the owner and the design team

HOW MUCH CAPACITY IS THERE?

Starts with assembling information:

- Drawings and design reports
- Type of foundation (spread footings, piles)
- Soil conditions
- Foundation size and location (in-river, on shore)
- Accessibility for integrity testing and inspection

RISKS

- There can be a big difference between as designed, as-built and as constructed
 - Can the foundation size and depth be assessed?
- What is the condition of the foundation?
 - Corrosion of steel
 - Concrete deterioration
- The feasibility of foundation reuse depends upon the design teams' ability to assess the capacity of the existing foundations

ISSUES TO CONSIDER

- Concrete
 - Poor quality
 - Freeze thaw

- Steel
 - Corrosion
 - Fatigue
- Alkali-silica reactivity (ASR)
- Leaching
- Cracking

- Water Table
 - Lots of issues where water table rises and falls

 Just because the bridge is still in service does not mean the foundation is performing as intended

PROCESS

- Assess the geotechnical parameters of the soil
- Based on our knowledge of the foundation size and the effects of time, estimate the capacity of the foundation using modern building codes
- Structural design will make a similar assessment of the super structure
- Estimate the remaining service life
- Assess the risks and benefits

- Built in 1967
- Proximity to neighbourhoods and businesses made constructing a new bridge challenging
- Three candidates for re-use
 - In-river pier footings
 - Piled floodplain foundations
 - Bridge abutments (combination of piled and spread footings)

- In-river piers
 - Two separate bridges, with four pier lines in the river
 - Proposed widening would see two new girder lines on the outside of each bridge
 - Proposed load increase of 30%, higher than typical IDOT recommendations
 - Structural designer implemented an innovative solution to reduce the increase in moment by connecting the pier caps of the two bridges together
 - Concerns about the environmental impact of drilling and constructing in the river

- In-river piers
 - Had as-built drawings and historic in-river test hole information
 - Drilled test holes adjacent to the river
 - Reviewed scour records
 - During low water conducted a test pit to verify foundation dimensions and footing embedment into bedrock
 - Geotechnical assessment found that the piers would have sufficient capacity to support the additional loads
 - Settlement during construction was less than 5 mm

CASE STUDY – GREENOCK CREEK


- Constructed in 1971
- Abutments are supported by steel piles
- Bridge would be replaced but there was a significant benefit in reusing the foundations

CASE STUDY – GREENOCK CREEK

- No as-built information available for the piles
 - Six test holes were conducted to collect samples and define the stratigraphy
 - Corrosivity assessment made of the soil and ground water
 - Downhole geophysics were conducted to estimate the pile length
 - Multiple methods were conducted with the parallel seismic and borehole magnetometer methods giving the best results
 - Challenges due to the pile batter

CASE STUDY – GREENOCK CREEK

- Estimate made of the section loss due to corrosion around the water table was made
- Updated capacity was estimated based on the new pile section and the test hole information
- Design life was estimated based on the corrosion rates
- Resulted in the piles being able to be reused which save significant construction time and reduced the overall project cost

TAKEAWAYS

- Bridge foundation reuse can generate significant time and cost savings for a project
- No unified guidelines for bridge foundation reuse
- Not all foundations are suitable for reuse, each bridge requires careful evaluation
 - Each site is different and will likely require different techniques to make the assessment
 - Requires collaboration between the structural and geotechnical teams
- Risks need to be minimized and the owner must understand the residual risks

REFERENCES

- Boeckmann, A.Z., Loehr, J.E. (2017) Current Practices and Guidelines for the Reuse of Bridge Foundations. NCHRP Synthesis 505
- Bridge Condition Report Procedures & Practices Illinois Department of Transportation, December 2011
- Foundation Reuse for Highway Bridges US Department of Transportation, November 2018
- Gidley, I., Workman, W.C. (2024) Foundation Design for Crowchild Trail Short-Term Improvements. ASCE Geo-Congress, Vancouver
- Sangiuliano, T., Staseff, D., Chatterji, P.K., Shi, K., de Castro, R. (2023) Reuse of steel pile foundations: Greenock Creek Bridge, Walkerton, Ontario, Canada. Forensic Engineering

